Linear Algebra Done Right

Gunbir Baveja

May 3, 2023

1 Vector Spaces

1.1 R^n and C^n

1.1.1 Complex Numbers

A complex number is an ordered pair (a, b) , where $a, b \in R$, but it is denoted as $a + bi$.

The set of all complex numbers is denoted by C:

$$
C = \{a + bi : a, b \in R\}.
$$

Addition and multiplication on C are defined by

$$
(a+bi) + (c+di) = (a+c) + (b+d)i,
$$

$$
(a+bi)(c+di) = (ac-bd) + (ad+bc)i,
$$

where $a, b, c, d \in R$.

Intuitively, $a + 0i$ is the real number a. Hence, R is a subset of C.

1.1.2 Properties of complex arithmetic

• commutativity

 $\alpha + \beta = \beta + \alpha$ and $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in C$.

• associativity

 $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ and $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ for all $\alpha, \beta, \gamma \in C$.

- identities $\gamma + 0 = \gamma$ and $\gamma \cdot 1 = \gamma$ for all $\gamma \in C$.
- additive inverse for every $\alpha \in C$, there exists a unique $\beta \in C$ such that $\alpha + \beta = 0$.
- multiplicative inverse for every $\alpha \in C$, there exists a unique $\beta \in C$ such that $\alpha \beta = 1$.
- distributive property $\gamma(\alpha + \beta) = \gamma \alpha + \gamma \beta$ for all $\gamma, \alpha, \beta \in C$.

Notation: Throughout these notes, F stands for either R or C . This is used because R and C are examples of what are called **fields**.

Elements of F are called **scalars**, emphasizing that an object is a number as opposed to a vector.

For $\alpha \in F$ and m positive integer, we define α^m to denote the product of α with itself m times:

$$
\alpha^m = \underbrace{\alpha \cdots \alpha}_{m \text{ times}}.
$$

Clearly $(\alpha^m)^n = \alpha^{mn}$ and $(\alpha \beta)^m = \alpha^m \beta^m$ for all $\alpha, \beta \in F$ and all positive integers m, n.

1.1.3 Lists

Before defining R^n and C^n , we look at two important examples:

• The set R^2 , which you can think of as a plane, is the set of all ordered pairs of real numbers:

$$
R^2 = \{(x, y) : x, y \in R\}.
$$

• The set R^3 , which you can think of as ordinary space, is the set of all ordered triples of real numbers:

$$
R^3 = \{(x, y, z) : x, y, z \in R\}.
$$

For a nonnegative integer n, a **list** of **length** n is an ordered collection of n elements (which might be numbers, other lists, or more abstract entities) separated by commas and surrounded by parentheses. A list of length n looks like this:

$$
(x_1,\ldots,x_n)\,.
$$

Two lists are equal if and only if they have the same length and the same elements in the same order.

Many mathematicians call a list of length n an n -tuple. Also remember that a list has a finite length, thus (x_1, x_2, \ldots) , is not a list.

A list of length 0 looks like this: (). We consider such an object to be a list to avoid trivial exceptions.

Lists differ from sets in two ways: in lists, order matters and repetitions have meaning; in sets, order and repetitions are irrelevant. For example,

- the lists $(3, 5)$ and $(5, 3)$ are not equal, but the sets $\{3, 5\}$ and $\{5, 3\}$ are equal.
- The lists $(4, 4)$ and $(4, 4, 4)$ are not equal (they do not have the same length), although the sets $\{4, 4\}$ and $\{4, 4, 4\}$ both equal the set $\{4\}$.

1.1.4 F^n

 $Fⁿ$ is the set of all lists of length n of elements of F:

$$
F^n = \{(x_1, \ldots, x_n) : x_j \in F \text{ for } j = 1, \ldots, n\}.
$$

For $(x_1, \ldots, x_n) \in F^n$ and $j \in \{1, \ldots, n\}$, we say that x_j is the jth coordinate of (x_1, \ldots, x_n) . For example, C^4 is the set of all lists of four complex numbers:

$$
C^4 = \{ (z_1, z_2, z_3, z_4) : z_1, z_2, z_3, z_4 \in C \}.
$$

Visualizing high dimensional sets is difficult, but we can perform algebraic manipulations in F^n as easily as in R^2 or R^3 . For example, **addition** in F^n is defined by adding corresponding coordinates:

$$
(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n).
$$

Commutativity of addition in F^n If $x, y \in F^n$, then $x + y = y + x$. The proof is trivial af bruv.

Notation: For $x \in F^n$, letting $x = (x_1, \ldots, x_n)$ is a good notation. Better to

not get into coordinates and work with just x.

Let 0 denote the list of length n whose coordinates are all 0 :

$$
0=(0,\ldots,0)\,.
$$

1.1.5 Additive inverse in F^n

For $x \in Fⁿ$, the **additive inverse** of x, denoted $-x$, is the vector $-x \in Fⁿ$ such that

$$
x + (-x) = 0.
$$

In other words, if $x = (x_1, ..., x_n)$, then $-x = (-x_1, ..., -x_n)$.

Visually, for a vector $x \in R^2$, the additive inverse $-x$ is the vector parallel to x and with the same length as x but pointing in the opposite direction.

1.1.6 Scalar multiplication in F^n

The product of a number λ and a vector in $Fⁿ$ is computed by multiplying each coordinate of the vector by λ :

$$
\lambda(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n);
$$

here $\lambda \in F$ and $(x_1, \ldots, x_n) \in F^n$.

The vector λx where λ is an integer, and x is a vector in R^2 has the magnitude $|\lambda| \cdot |x|$ and direction as of x.

1.1.7 Digression on Fields

A field is a set containing at least two distinct elements 0 and 1, along with operations of addition and multiplication satisfying all the properties listed in 1.1.3.

Examples include R, C , and the set of rational numbers along with the usual operations of addition and multiplication. Interestingly, a set $\{0, 1\}$ is also a field with usual operations of addition and multiplication except that $1 + 1$ is defined to equal 0.

1.2 Exercises

1. Suppose a and b are real numbers, not both 0. Find real numbers c and d such that

$$
1/(a+bi) = c + di.
$$

2. Show that

$$
\frac{-1+\sqrt{4}i}{2}
$$

is a cube root of 1.

Soln:

$$
\left(\frac{-1+\sqrt{3}i}{2}\right)^2 = \frac{-1-\sqrt{3}i}{2}
$$

$$
\implies \frac{-1-\sqrt{3}i}{2} \cdot \frac{-1+\sqrt{3}}{2} = 1.
$$

3. Find two distinct square roots of i.

For this, we use the fact that $i = e^{i\pi/2}$.

2 Vector Space

An addition on a set V is a function that assigns an element $u + v \in V$ to each pair of elements $u, v \in V$.

A scalar multiplication on a set V is a function that assigns an element $\lambda v \in V$ to each $\lambda \in F$ and each $v \in V$.

Vector Space A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:

• commutativity

 $u + v = v + u$ for all $u, v \in V$.

• associativity

 $(u + v) + w = u + (v + w)$ and $(ab)v = a(bv)$ for all $u, v, w \in V$ and all $a, b \in F$.

- additive identity there exists an element $0 \in V$ such that $v + 0 = v$ for all $v \in F$
- additive inverse for every $v \in V$, there exists $w \in V$ such that $v + w = 0$.
- multiplicative identity $1v = v$ for all $v \in V$.
- distributive properties $a(u + v) = au + av$ and $(a + b)v = av + bv$ for all $a, b \in F$ and all $u, v \in V$.

Elements of a vector space are called vectors or points.

In order to be precise, we say that V is a vector space over F instead of saying simply that V is a vector space. For example, $Rⁿ$ is a vector space over R , and $Cⁿ$ is a vector space over C .

Real vector space, complex vector space A vector space over R is called a real vector space, and a vector space over C is called a complex vector space.

The simplest vector space contains only one point. In other words, $\{0\}$ is a vector space.

2.1 F^S

- If S is a set, then F^S denotes the set of functions from S to F.
- For $f, g \in F^S$, the sum $f + g \in F^S$ is the function defined by

$$
(f+g)(x) = f(x) + g(x)
$$

for all $x \in S$.

• For $\lambda \in F$ and $f \in F^S$, the **product** $\lambda f \in F^S$ is the function defined by

$$
(\lambda f)(x) = \lambda f(x)
$$

for all $x \in S$.

For example, if S is the interval [0, 1] and $F = R$ then $R^{[0,1]}$ is the set of real-valued functions on the interval [0, 1].

Example: F^S is a vector space

- If S is a nonempty set, then F^S (with the operations of addition and scalar multiplication as defined above) is a vector space over F .
- The additive identity of F^S is the function $0: S \to F$ defined by

 $0(x) = 0$

for all $x \in S$.

• For $f \in F^S$, the additive inverse of f is the function $-f : S \to F$ defined by

$$
(-f)(x) = -f(x)
$$

for all $x \in S$.

• Basically, same properties hold but with a domain S and for the set of functions F^S .

The elements of a vector space $R^{[0,1]}$ are **real-valued functions on** [0, 1], not lists. In general, a vector space is an abstract entity whose elements might be lists, functions, or weird objects.

Note that F^n and F^{∞} are special cases of vector space F^S because a list of length n of numbers in F can be thought of as a function from $\{1, 2, \ldots, n\}$ to F and a sequence of numbers in F can be thought of as a function from the set of positive integers to F.

In other words, we can think of F^n as $F^{\{1,2,\ldots,n\}}$ and F^{∞} as $F^{\{1,2,\ldots\}}$.

2.1.1 Unique additive identity

A vector space has a single unique additive identity.

Proof Suppose 0 and $0'$ are both additive identities for some vector space V. Then

$$
0' = 0' + 0 = 0 + 0' = 0,
$$

where the first equality holds because 0 is an additive identity, the second equality comes from the commutativity, and the third holds because 0′ is an additive identity. Thus $0' = 0$, proving that V has only one additive identity.

2.1.2 Unique additive inverse

Every element in a vector space has a unique additive inverse.

Proof Suppose V is a vector space. Let $v \in V$. Suppose w and w' are additive inverses of v. Then

$$
w = w + 0 = w + (v + w') = (w + v) + w' = 0 + w' = w'.
$$

Thus $w = w'$, as desired.

Using 2.1.1 and 2.1.2, the following notation is:

Notation $-v, w - v$ Let $v, w \in V$. Then

- $-v$ denotes the additive inverse of v;
- $w v$ is defined to be $w + (-v)$.

For the rest of the notes, V will denote a vector space over F .

The number 0 times a vector $0v = 0$ for every $v \in V$, where 0 is a scalar on the LHS and a vector on the RHS.

Proof For $v \in V$, we have

$$
0v = (0+0)v = 0v + 0v.
$$

Adding the additive inverse of $0v$ to both sides of the equation above gives $0 = 0v$, as desired.

A number times the vector $0 \quad a0 = 0$ for every $a \in F$.

Proof For $a \in F$, we have

$$
a0 = a(0+0) = a0 + a0.
$$

Adding the additive inverse of a0 to both sides of the equation gives $0 = a0$, as desired.

The number -1 times a vector $(-1)v = -v$ for every $v \in V$.

Proof For $v \in V$, we have

$$
v + (-1)v = 1v + (-1)v = (1 + (-1))v = 0v = 0.
$$

This equation says that $(-1)v$, when added to v, gives 0. Thus $(-1)v$ is the additive inverse of v , as desired.

2.2 Exercises

1. Suppose $a \in F$, $v \in V$, and $av = 0$. Prove that $a = 0$ or $v = 0$.

Soln: If $a = 0$, we are done. If $a \neq 0$, then a has inverse a^{-1} s.t. $a(a^{-1}) = 1$. So,

$$
v = 1 \cdot v = (aa^{-1})v = a^{-1}(av) = 0.
$$

2. Suppose $v, w \in V$. Explain why there exists a unique $x \in V$ such that $v + 3x = w$.

Soln: Let $\exists x, x' \in V, v+3x = v+3x' = w$. Thus, $3(x-x') = w-v$ \implies $3x - 3x' = w - v - (w - v) = 0$. Hence, $x - x' = 0$, that is $x = x'$. This shows uniqueness.

3 Subspaces

A subset U of V is called a **subspace** of V if U is also a vector space (using the same addition and scalar multiplication as on V). For example, $\{(x_1, x_2, 0 :$ $x_1, x_2 \in F$ is a subspace of F^3 .

To check whether a subset of a vector space is a subspace, we condition the subset to the following conditions.

3.0.1 Conditions for a subspace

A subset U and V is a subspace of V if and only if U satisfies the following three conditions:

- additive identity: $0 \in U$
- closed under addition: $u, w \in U \implies u + w \in U$;
- closed under scalar multiplication: $a \in F$ and $u \in U \implies au \in U$.

If $u \in U$, then $-u = (-1)u$ is also in U by the third condition above. Hence every element of U has an additive inverse in U.

Example of subspaces

• If $b \in F$, then

$$
\{(x_1, x_2, x_3, x_4) \in F^4 : x_3 = 5x_4 + b\}
$$

is a subspace of F^4 if and only if $b = 0$.

- The set of continuous real-valued functions on the interval $[0, 1]$ is a subspace of $R^{[0,1]}$.
- The set of differentiable real-valued functions on R is a subspace of R^R .
- The set of differentiable real-valued functions f on the interval $(0, 3)$ such that $f'(2) = b$ is a subspace of $R^{(0,3)}$ if and only if $b = 0$.
- The set of all sequences of complex numbers with limit 0 is a subspace of C^{∞} .

The subspaces of R^2 are precisely $\{0\}, R^2$, and all lines in R^2 through the origin. The subspaces of R^3 are $\{0\}, R^3$, and all the lines in R^3 passing through the origin, and all planes in $R³$ through the origin.

A couple things before we finish talking about primitive subspaces: Clearly $\{0\}$ is the smallest subspace of V and V itself is the largest subspace of V. The empty set is not a subspace of V because a subspace must be a vector space and hence must contain at least one element, namely, an additive identity.

3.0.2 Sum of subspaces

The union of subspaces is rarely a subspace, which is why we usually work with sums rather than unions.

Sum of Subsets Suppose U_1, \ldots, U_m are subsets of V. The sum of U_1, \ldots, U_m , denoted $U_1 + \cdots + U_m$, is the set of all possible sum of elements of U_1, \ldots, U_m . More precisely,

$$
U_1 + \cdots + U_m = \{u_1 + \cdots + u_m : u_1 \in U_1, \ldots, u_m \in U_m\}.
$$

Example Suppose U is the set of all elements of $F³$ whose second and third coordinates equal 0, and W is the set of all elements of $F³$ whose first and third coordinates equal 0:

 $U = \{(x, 0, 0) \in F^3 : x \in F\}$ and $W = \{(0, y, 0) \in F^3 : y \in F\}.$

Then

$$
U + W = \{(x, y, 0) : x, y \in F\}.
$$

Example Suppose that $U = \{(x, x, y, y) \in F^4 : x, y \in F\}$ and $W = \{(x, x, x, y) \in F^4 : x, y \in F\}$ $F^4: x, y \in F$. Then

$$
U + W = \{ (x, x, y, z) \in F^4 : x, y, z \in F \}.
$$

Now this one relies on the fact that we named x in $U + W$ as $x + x$, y as $x + y$ and z as $y + y$.

3.0.3 Sum of subspaces is the smallest containing subspace

Suppose U_w, \ldots, U_m are the subspaces of V. Then $U_1 + \cdots + U_m$ is the smallest subspace of V containing U_1, \ldots, U_m .

Proof It is easy to see that $0 \in U_1 + \cdots + U_m$ and that $U_1 + \cdots + U_m$ is closed under addition and scalar multiplication. Thus $U_1 + \cdots + U_m$ is a subspace of V .

Clearly U_1, \ldots, U_m are all contained in $U_1 + \cdots + U_m$ (to see this, consider sums $u_1 + \cdots + u_m$ wheree all except one of the u's are 0). Conversely, every subspace of V containing U_1, \ldots, U_m contains $U_1 + \cdots + U_m$ (because subspaces must contain all finite sums of their elements). Thus $U_1+\cdots+U_m$ is the smallest subspace of V containing U_1, \ldots, U_m .

3.0.4 Direct Sums

Suppose U_1, \ldots, U_m are subspaces of V. Every element of $U_1 + \cdots + U_m$ can be written in the form

 $u_1 + \cdots + u_m$

where each u_j is in U_j .