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1 Vector Spaces

1.1 Rn and Cn

1.1.1 Complex Numbers

A complex number is an ordered pair (a, b), where a, b ∈ R, but it is denoted
as a+ bi.

The set of all complex numbers is denoted by C:

C = {a+ bi : a, b ∈ R}.

Addition and multiplication on C are defined by

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i,

where a, b, c, d ∈ R.
Intuitively, a+ 0i is the real number a. Hence, R is a subset of C.

1.1.2 Properties of complex arithmetic

• commutativity
α+ β = β + α and αβ = βα for all α, β ∈ C.

• associativity
(α+ β) + γ = α+ (β + γ) and (αβ)γ = α(βγ) for all α, β, γ ∈ C.

• identities
γ + 0 = γ and γ · 1 = γ for all γ ∈ C.

• additive inverse
for every α ∈ C, there exists a unique β ∈ C such that α+ β = 0.

• multiplicative inverse
for every α ∈ C , there exists a unique β ∈ C such that αβ = 1.

• distributive property
γ(α+ β) = γα+ γβ for all γ, α, β ∈ C.

1



Notation: Throughout these notes, F stands for either R or C. This is used
because R and C are examples of what are called fields.

Elements of F are called scalars, emphasizing that an object is a number
as opposed to a vector.

For α ∈ F and m positive integer, we define αm to denote the product of α
with itself m times:

αm = α · · ·α︸ ︷︷ ︸
m times

.

Clearly (αm)n = αmn and (αβ)m = αmβm for all α, β ∈ F and all positive
integers m,n.

1.1.3 Lists

Before defining Rn and Cn , we look at two important examples:

• The set R2, which you can think of as a plane, is the set of all ordered
pairs of real numbers:

R2 = {(x, y) : x, y ∈ R}.

• The set R3, which you can think of as ordinary space, is the set of all
ordered triples of real numbers:

R3 = {(x, y, z) : x, y, z ∈ R}.

For a nonnegative integer n, a list of length n is an ordered collection of
n elements (which might be numbers, other lists, or more abstract entities)
separated by commas and surrounded by parentheses. A list of length n looks
like this:

(x1, . . . , xn) .

Two lists are equal if and only if they have the same length and the same
elements in the same order.

Many mathematicians call a list of length n an n-tuple. Also remember that
a list has a finite length, thus (x1, x2, . . .), is not a list.

A list of length 0 looks like this: (). We consider such an object to be a list
to avoid trivial exceptions.

Lists differ from sets in two ways: in lists, order matters and repetitions
have meaning; in sets, order and repetitions are irrelevant. For example,

• the lists (3, 5) and (5, 3) are not equal, but the sets {3, 5} and {5, 3} are
equal.

• The lists (4, 4) and (4, 4, 4) are not equal (they do not have the same
length), although the sets {4, 4} and {4, 4, 4} both equal the set {4}.

2



1.1.4 Fn

Fn is the set of all lists of length n of elements of F :

Fn = {(x1, . . . , xn) : xj ∈ F for j = 1, . . . , n}.

For (x1, . . . , xn) ∈ Fn and j ∈ {1, . . . , n}, we say that xj is the jth coordinate
of (x1, . . . , xn). For example, C4 is the set of all lists of four complex numbers:

C4 = {(z1, z2, z3, z4) : z1, z2, z3, z4 ∈ C}.

Visualizing high dimensional sets is difficult, but we can perform algebraic
manipulations in Fn as easily as in R2 or R3. For example, addition in Fn is
defined by adding corresponding coordinates:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn).

Commutativity of addition in Fn If x, y ∈ Fn, then x+ y = y + x.
The proof is trivial af bruv.

Notation: For x ∈ Fn, letting x = (x1, . . . , xn) is a good notation. Better to
not get into coordinates and work with just x.

Let 0 denote the list of length n whose coordinates are all 0:

0 = (0, . . . , 0) .

1.1.5 Additive inverse in Fn

For x ∈ Fn, the additive inverse of x, denoted −x, is the vector −x ∈ Fn

such that
x+ (−x) = 0.

In other words, if x = (x1, . . . , xn), then −x = (−x1, . . . ,−xn).
Visually, for a vector x ∈ R2, the additive inverse −x is the vector parallel

to x and with the same length as x but pointing in the opposite direction.

1.1.6 Scalar multiplication in Fn

The product of a number λ and a vector in Fn is computed by multiplying each
coordinate of the vector by λ:

λ(x1, . . . , xn) = (λx1, . . . , λxn);

here λ ∈ F and (x1, . . . , xn) ∈ Fn.
The vector λx where λ is an integer, and x is a vector inR2 has the magnitude

| λ | · | x | and direction as of x.
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1.1.7 Digression on Fields

A field is a set containing at least two distinct elements 0 and 1, along with
operations of addition and multiplication satisfying all the properties listed in
1.1.3.

Examples include R,C, and the set of rational numbers along with the usual
operations of addition and multiplication. Interestingly, a set {0, 1} is also a
field with usual operations of addition and multiplication except that 1 + 1 is
defined to equal 0.

1.2 Exercises

1. Suppose a and b are real numbers, not both 0. Find real numbers c and d
such that

1/(a+ bi) = c+ di.

2. Show that
−1 +

√
4i

2

is a cube root of 1.

Soln: (
−1 +

√
3i

2

)2

=
−1−

√
3i

2

=⇒ −1−
√
3i

2
· −1 +

√
3

2
= 1.

3. Find two distinct square roots of i.

For this, we use the fact that i = eiπ/2.

2 Vector Space

An addition on a set V is a function that assigns an element u+ v ∈ V to each
pair of elements u, v ∈ V .

A scalar multiplication on a set V is a function that assigns an element
λv ∈ V to each λ ∈ F and each v ∈ V .

Vector Space A vector space is a set V along with an addition on V and a
scalar multiplication on V such that the following properties hold:

• commutativity
u+ v = v + u for all u, v ∈ V .

4



• associativity
(u + v) + w = u + (v + w) and (ab)v = a(bv) for all u, v, w ∈ V and all
a, b ∈ F .

• additive identity
there exists an element 0 ∈ V such that v + 0 = v for all v ∈ F

• additive inverse
for every v ∈ V , there exists w ∈ V such that v + w = 0.

• multiplicative identity
1v = v for all v ∈ V .

• distributive properties
a(u+ v) = au+av and (a+ b)v = av+ bv for all a, b ∈ F and all u, v ∈ V .

Elements of a vector space are called vectors or points.
In order to be precise, we say that V is a vector space over F instead of

saying simply that V is a vector space. For example, Rn is a vector space over
R, and Cn is a vector space over C.

Real vector space, complex vector space A vector space over R is called
a real vector space, and a vector space over C is called a complex vector space.

The simplest vector space contains only one point. In other words, {0} is a
vector space.

2.1 F S

• If S is a set, then FS denotes the set of functions from S to F .

• For f, g ∈ FS , the sum f + g ∈ FS is the function defined by

(f + g)(x) = f(x) + g(x)

for all x ∈ S.

• For λ ∈ F and f ∈ FS , the product λf ∈ FS is the function defined by

(λf)(x) = λf(x)

for all x ∈ S.

For example, if S is the interval [0, 1] and F = R then R[0,1] is the set of
real-valued functions on the interval [0, 1].
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Example: FS is a vector space

• If S is a nonempty set, then FS (with the operations of addition and scalar
multiplication as defined above) is a vector space over F .

• The additive identity of FS is the function 0 : S → F defined by

0(x) = 0

for all x ∈ S.

• For f ∈ FS , the additive inverse of f is the function −f : S → F defined
by

(−f)(x) = −f(x)

for all x ∈ S.

• Basically, same properties hold but with a domain S and for the set of
functions FS .

The elements of a vector space R[0.1] are real-valued functions on [0, 1], not
lists. In general, a vector space is an abstract entity whose elements might be
lists, functions, or weird objects.

Note that Fn and F∞ are special cases of vector space FS because a list of
length n of numbers in F can be thought of as a function from {1, 2, . . . , n} to
F and a sequence of numbers in F can be thought of as a function from the set
of positive integers to F .

In other words, we can think of Fn as F {1,2,...,n} and F∞ as F {1,2,...}.

2.1.1 Unique additive identity

A vector space has a single unique additive identity.

Proof Suppose 0 and 0′ are both additive identities for some vector space V .
Then

0′ = 0′ + 0 = 0 + 0′ = 0,

where the first equality holds because 0 is an additive identity, the second equal-
ity comes from the commutativity, and the third holds because 0′ is an additive
identity. Thus 0′ = 0, proving that V has only one additive identity.

2.1.2 Unique additive inverse

Every element in a vector space has a unique additive inverse.

Proof Suppose V is a vector space. Let v ∈ V . Suppose w and w′ are additive
inverses of v. Then

w = w + 0 = w + (v + w′) = (w + v) + w′ = 0 + w′ = w′.

Thus w = w′, as desired.
Using 2.1.1 and 2.1.2, the following notation is:
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Notation −v, w − v Let v, w ∈ V . Then

• −v denotes the additive inverse of v;

• w − v is defined to be w + (−v).

For the rest of the notes, V will denote a vector space over F .

The number 0 times a vector 0v = 0 for every v ∈ V , where 0 is a scalar
on the LHS and a vector on the RHS.

Proof For v ∈ V , we have

0v = (0 + 0)v = 0v + 0v.

Adding the additive inverse of 0v to both sides of the equation above gives
0 = 0v, as desired.

A number times the vector 0 a0 = 0 for every a ∈ F .

Proof For a ∈ F , we have

a0 = a(0 + 0) = a0 + a0.

Adding the additive inverse of a0 to both sides of the equation gives 0 = a0, as
desired.

The number −1 times a vector (−1)v = −v for every v ∈ V .

Proof For v ∈ V , we have

v + (−1)v = 1v + (−1)v = (1 + (−1)) v = 0v = 0.

This equation says that (−1)v, when added to v, gives 0. Thus (−1)v is the
additive inverse of v, as desired.

2.2 Exercises

1. Suppose a ∈ F, v ∈ V , and av = 0. Prove that a = 0 or v = 0.

Soln: If a = 0, we are done. If a ̸= 0, then a has inverse a−1 s.t.
a(a−1) = 1. So,

v = 1 · v = (aa−1)v = a−1(av) = 0.

2. Suppose v, w ∈ V . Explain why there exists a unique x ∈ V such that
v + 3x = w.
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Soln: Let ∃x, x′ ∈ V, v+3x = v+3x′ = w. Thus, 3(x−x′) = w−v =⇒
3x − 3x′ = w − v − (w − v) = 0. Hence, x − x′ = 0, that is x = x′. This
shows uniqueness.

3 Subspaces

A subset U of V is called a subspace of V if U is also a vector space (using
the same addition and scalar multiplication as on V ). For example, {(x1, x2, 0 :
x1, x2 ∈ F} is a subspace of F 3.

To check whether a subset of a vector space is a subspace, we condition the
subset to the following conditions.

3.0.1 Conditions for a subspace

A subset U and V is a subspace of V if and only if U satisfies the following
three conditions:

• additive identity: 0 ∈ U

• closed under addition: u,w ∈ U =⇒ u+ w ∈ U ;

• closed under scalar multiplication: a ∈ F and u ∈ U =⇒ au ∈ U .

If u ∈ U , then −u = (−1)u is also in U by the third condition above. Hence
every element of U has an additive inverse in U .

Example of subspaces

• If b ∈ F , then
{(x1, x2, x3, x4) ∈ F 4 : x3 = 5x4 + b}

is a subspace of F 4 if and only if b = 0.

• The set of continuous real-valued functions on the interval [0, 1] is a sub-
space of R[0,1].

• The set of differentiable real-valued functions on R is a subspace of RR.

• The set of differentiable real-valued functions f on the interval (0, 3) such
that f ′(2) = b is a subspace of R(0,3) if and only if b = 0.

• The set of all sequences of complex numbers with limit 0 is a subspace of
C∞.

The subspaces of R2 are precisely {0}, R2, and all lines in R2 through the origin.
The subspaces of R3 are {0}, R3, and all the lines in R3 passing through the
origin, and all planes in R3 through the origin.

A couple things before we finish talking about primitive subspaces: Clearly
{0} is the smallest subspace of V and V itself is the largest subspace of V . The
empty set is not a subspace of V because a subspace must be a vector space
and hence must contain at least one element, namely, an additive identity.
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3.0.2 Sum of subspaces

The union of subspaces is rarely a subspace, which is why we usually work with
sums rather than unions.

Sum of Subsets Suppose U1, . . . , Um are subsets of V . The sum of U1, . . . , Um,
denoted U1 + · · ·+Um, is the set of all possible sum of elements of U1, . . . , Um.
More precisely,

U1 + · · ·+ Um = {u1 + · · ·+ um : u1 ∈ U1, . . . , um ∈ Um}.

Example Suppose U is the set of all elements of F 3 whose second and third
coordinates equal 0, and W is the set of all elements of F 3 whose first and third
coordinates equal 0:

U = {(x, 0, 0) ∈ F 3 : x ∈ F} and W = {(0, y, 0) ∈ F 3 : y ∈ F}.

Then
U +W = {(x, y, 0) : x, y ∈ F}.

Example Suppose that U = {(x, x, y, y) ∈ F 4 : x, y ∈ F} andW = {(x, x, x, y) ∈
F 4 : x, y ∈ F}. Then

U +W = {(x, x, y, z) ∈ F 4 : x, y, z ∈ F}.

Now this one relies on the fact that we named x in U + W as x + x, y as
x+ y and z as y + y.

3.0.3 Sum of subspaces is the smallest containing subspace

Suppose Uw, . . . , Um are the subspaces of V . Then U1+ · · ·+Um is the smallest
subspace of V containing U1, . . . , Um.

Proof It is easy to see that 0 ∈ U1+ · · ·+Um and that U1+ · · ·+Um is closed
under addition and scalar multiplication. Thus U1 + · · · + Um is a subspace of
V .

Clearly U1, . . . , Um are all contained in U1 + · · ·+ Um (to see this, consider
sums u1 + · · · + um wheree all except one of the u’s are 0). Conversely, every
subspace of V containing U1, . . . , Um contains U1+ · · ·+Um (because subspaces
must contain all finite sums of their elements). Thus U1+· · ·+Um is the smallest
subspace of V containing U1, . . . , Um.

3.0.4 Direct Sums

Suppose U1, . . . , Um are subspaces of V . Every element of U1+ · · ·+Um can be
written in the form

u1 + · · ·+ um,

where each uj is in Uj .
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